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A Novel Recursive Partitioning Criterion!

Michael P. Perrone

Physics Department and Center for Neural Science
Box 1843, Brown University
Providence, RI 02912
Email: mpp@cns.brown.edu

Abstract

A data-driven algorithm for partitioning many-class classification problems is pre-
sented. The algorithm generates tree-structured hybrid networks with controller nets
at tree branches and local expert nets at the leaves. The controller nets recursively
partition the feature space according to a novel misclassification minimization rule de-
signed to create groupings of the classes which simplify the classification task. Each
local expert is trained only on a subset of the training data corresponding to one of
the partitions. The advantage to this approach is that the classification task that each
local expert performs is greatly simplified. This simplification helps to avoid the curse
of dimensionality and scaling problems by allowing the local expert nets to focus their
search for structure in a small portion of the input space.

Hybrid Neural Networks

Recent convergence theorems for a variety of neural network architectures show that certain
neural networks can perform arbitrary functional mappings (See, for example, Barron89,
Cybenko89, Hampshire90). These results represent worst case bounds for network perfor-
mance and can be improved by using data-driven techniques if one can assume the existence
of appropriate structure in the data. (See, for example, Bachmann90, Breiman84, Ersoy90,
Friedman88, Nowlan90, Reilly88, Reilly87, Sanger90, Sankar91)

One can use hybrid networks to implement data-driven algorithms in a neural network
setting. (See Cooper9l for further discussion and references.) The hybrid approach is to
divide a large network into many smaller networks — called local experts — depending on
the data presented to the algorithm. Each local expert then focuses only on a small task.
This division of labor among various networks helps in the poor scaling problems of large
networks by reducing the required complexity of each of the individual networks. If each
individual network is solving a small portion of the total problem then it will necessarily be
less complex. However, the division of the data among several networks may increase the
bias of the architecture to the training data and therefore require special care. Consider an

1The work on which this article is based was supported in part by the National Science Foundation, the
Army Research Office and the Office of Naval Research.




optical character recognition task: A network which identifies all letters will certainly be
more complex than a network which only distinguishes between “V” and “U”.

This paper presents some results from ongoing research into hybrid network algorithms
at the Center for Neural Science and Nestor Inc.

The Partitioning Problem

When designing a hybrid network algorithm, one must decide how the feature space will
be divided among the local experts. We call this problem the partitioning problem. One
effective approach to the partitioning problem is to have local expert nets competing for
regions of the feature space (Nowlan90). Another approach is to dedicate local experts
to particularly problematic regions of feature space (Cooper9l, Reilly87, Reilly88). The
approach we take in this paper is motivated by work by Bachmann (Bachmann90) in which
multi-class tasks were partitioned by arbitrary class groupings. In this paper, we present a
more systematic approach to forming class groupings which looks for the simplest partition
at each step.

The first step in partitoning a particular group of N classes into subgroups is to generate
a misclassification matrix from a network which has been trained on the full N class problem.
The misclassification matrix element m;; is the empirical probability that the trained network
will classify test patterns from class ¢ as belonging to class . Thus any off-diagonal terms
correspond to misclassification and a perfect network would produce a diagonal matrix.

We now define a partition as a grouping of the N class labels into two, non-empty
subgroups a and § of labels. Our desire is to find the partition with the simplest decision
boundary. One measure of the simplicity of a decision boundary is how often patterns are
misclassified across it. Therefore we define an inter-group misclassification measure, M(a, 8),

as follows:
M(a,B)= ). my,
i€a,jEB
where m;; is an element from the misclassification matrix and « and 8 are the subgroups
of the partition. (Fig. 1) We now define a good partition as one for which M(a,f) is
minimized. Thus, a good partition is one for which there is a minimum of misclassification
between groups.

For very large problems or for problems with a high percentage of misclassifications,
it may be beneficial to include a penalty term for unbalanced partitions. An unbalanced
partition is one for which one of the subgroups has many more classes than the other.
(Fig. 1) For such a partition it is possible that minimizing an unpenalized misclassification
measure does not represent a good partition. Therefore, one may choose to use the following
penalized version of the misclassification measure:

M(a,

Z My
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where N, and Nj are the number of classes in a and 3, respectively.




We are still left with the problem of actually finding good partitions. To minimize
M(a,B), we can do an exhaustive search through all possible partitions. However, an ex-
haustive search is combinatorial in the number of classes and may be intractable when the
number of classes is very large.

As an alternative to the exhaustive search, one can use a simulated annealing algorithm
in which the intra-group classification measure is the energy. (See Press87) Energy state
transitions then correspond to transitions between neighboring partitions where neighboring
partitions are partitions that differ by an interchange of two classes. It should be noted
however that it is not essential to find the optimal partition.

Once a partition has been found, the decision boundary may be further simplified by
removing a class entirely from the partition and in this way defering a decision on that
class until later in the tree. This removal can be performed for a class which contributes
significantly to M and/or which does not significantly change M when it is moved from one
subgroup to another. If the decision for a particular class is deferred, the class must be
passed down both branches of the tree from the controller net.

Controller Biasing

Hybrid neural networks are subject to biasing from two sources: the local experts and the
controller nets. Creating biased local experts corresponds to generating biased estimates of
the decision boundaries, which is a common problem for all neural network algorithms, and
can be handled with standard cross-validatory techniques. However, biasing of the controller
nets corresponds to generating biased architectures and is a problem whose solution depends
on the specific architecture of the hybrid network.

For tree-structure architectures, one can use CART pruning to find optimal performance
(See Breiman84). Once the entire tree has been grown, we can order the set of nested
sub-trees according to the following performance measure: For each node in each subtree,
calculate the ratio of the performance of the subtree to the performance of a new subtree
where the branches from the node of the old subtree are replaced by a single trained network.
Choose the subtree with the best performance on an independent testing set.

Of course like the local experts, the controller nets are also suject to bias due to over-
fitting to the training data. Therefore the controller nets should be trained using cross
validation. In addition, we can try to avoid over-fitting in the controller nets by using
controllers which are constrained to search for simple decision boundaries. For example, 2
backprop network which has only two hidden units is constrained to a much smaller family
of decision boundaries than a backprop network with many hidden units. For the hybrid
algorithm in this paper, constraining the controllers in this way is a desirable thing to do
since the partitioning is motivated by a search for the simplest subgroup boundary.




The Algorithm

The recursive algorithm outlined below is a method for generating a tree-structured network

which divides a many-class classification problem into a set of many smaller classification
tasks.

1) Train a local expert to distinguish between all classes in the group.

2) Partition the group into subgroups based on the local expert’s misclassification
matrix.

3) Train a controller net to distinguish between subgroups.
4) Repeat steps 1) — 4) on all subgroups of three or more classes.

5) Use the CART top-down/bottom-up pruning methodology to avoid biasing.

Example

As an example, consider an imaginary ten class classification problem (Fig. 2). At the first
level, the net partitions the task into one group of six classes and one group of four classes.
The group of four is then be partitioned into two groups of two classes each. These groups
are then passsed to local expert nets for final classification. The group of six classes is
partitioned into one group of three classes and a group of four classes. Note that at this
branch, the membership of one of the classes has been defered to the next branching; so
class ”3” is a member of both of the class groupings made at this branch. The new group of
four classes is then partitioned into two groups of two classes each, while the group of three
classes is then passes directly to a local expert.

Note that the hybrid net formed is flexible to the extent that the type of networks used
for the controller nets and local expert nets are not specified. They can be chosen as needed
to optimize the classification performance. In addition, note that the tree-structure need
not be balanced. Finally, note that the probability of correct classification for the hybrid
network is the product of the probabilities of correct classification at each controller network
and the final local expert.

Acknowledgements

I would like to thank Prof. Leon N Cooper and Nathan Intrator for many helpful discussions.




References

[Bachmann90] Bachmann, C. M. (1990) Learning and Generalization in Neural Net-
works, Ph.D. Thesis, Brown University.

[Barron89] Barron, A. R. (1989) Statistical Properties of Artificial Neural Networks,
Proc. IEEE Conf. on Decision and Control

[Breiman84] Breiman, Friedman, Olshen and Stone (1984) Classification and Regres-
sion Trees.

[Cooper91] Cooper, L. N. (1991) Hybrid Neural Network Architectures: Equilibrium
Systems That Pay Attention, Proc. CAIP Neural Network Workshop

[Cybenko89] Cybenko, G. (1989) Approximation by Superpositions of a Sigmoidal
Function, Mathematics of Control, Signals and Systems

[Ersoy90] Ersoy, O. K. (1990) Parallel, Self-Organizing, Heirarchical Neural Networks,
IEEE Trans. on Neural Netowrks

[Freidman88] Friedman, J. H. (1988) Multiple Adaptive Regression Splines, Technical
Report No. 102, Department of Statistics, Stanford University

[Hampshire90] Hampshire, J. B. and B. A. Pearlmutter (1990) Equivalence Proofs For
Multi-Layer Perceptron Classifiers and the Baysian Discriminant Function, Proc.
1990 Connectionists Models Summer School

[Nowlan90] Nowlan, S. J. (1990) Competing Experts: An Erperimental Investigation

of Assosciative Mixture Models, Technical Report CRG-TR-90-5, University of
Toronto

[Press87] Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1987)
Numerical Recipes: The Art of Scientific Computing.

[Reilly87] Reilly, D. L., C. L. Scofield, C. Elbaum and L. N Cooper (1987) Learning
System Architectures Composed of Multiple Learning Modules, Proc. IEEE First
Int. Conf. on Neural Networks

[Reilly88] Reilly, D. L., C. L. Scofield, L. N Cooper and C. Elbaum (1988) GENSEP:
A Multiple Neural Network Learning System with Modifiable Network Topology
Abstracts of the First Annual International Neural Network Society Meeting

[Sanger90] Sanger, T. D. (1990) A Tree-Structured Adaptive Network for Function
Approximation in High-Dimensional Spaces, [EEE Trans. Neural Networks

[Sankar91] Sankar, A. and R. J. Mammone (1991) Combining Neural Networks and
Decision Trees. Proc. SPIE’s Technical Conference on Apllications of Artificial
Intelligence and Neural Networks




